메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤성현 (창원대학교) 이흥규 (창원대학교)
저널정보
사단법인 항법시스템학회 Journal of Positioning, Navigation, and Timing Journal of Positioning, Navigation, and Timing 제10권 제1호
발행연도
2021.1
수록면
13 - 20 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A series of numerical experiments with measurements observed at continuously operating reference stations (CORS) of the international GNSS services (IGS) and the national geographical information institute of Korea (NGII) have been intensively carried out to evaluate the quality of pseudo-ranges and carrier-phases of GPS L2C signal obtained by various receiver types, benign and harsh operational environment. In this analysis, some quality measures, such as signal-to-noise ratio (SNR), the magnitude of multipath, and the number of cycle slips, the pseudo-range and carrier phase obtaining rate were computed and compared. The SNR analysis revealed an impressive result that the trend in the SNR of C/A and the L2C comparably depends upon type of receivers. The result of multipath analysis also showed clearly different tendency depending on the receiver types. The reason for this inconsistent tendency was seemed to be that the different multipath mitigation algorithm built-in each receiver. The number of L2C cycle slip was less than P2(Y), and L2C measurements obtaining rate was higher than that of P2(Y) in three receiver types. In the harsh observational environment, L2C quality was not only superior to P2(Y) in all aspects such as SNR, multipath magnitude, the number of cycle slips, and measurement obtaining rate, but also it could maintain a level of quality equivalent to C/A. According to the results of this analysis, it’s expected that improved positioning performance like accuracy and continuity can be got through the use of L2C instead of existing P2(Y).

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0