메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김선호 (영광병원) 곽호성 (우송대학교)
저널정보
대한통합의학회 대한통합의학회지 대한통합의학회지 제8권 제4호
발행연도
2020.1
수록면
107 - 115 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: This study aims to systematically review the dual-task evaluation applied to the screening of mild cognitive impairment. It also aims to present various evaluation items and results analysis methods for dual tasks applied to patients with mild cognitive impairment. Methods: We conducted a systematic search of published studies in PubMed databases and KISS from January 2000 to August 2020 using the main keywords such as “Dual task,” “Mild Cognitive impairment,” “Elderly,” and “Screening.” We selected a total of 10 studies for the analysis from 1314 searched articles. Results: We analyzed the qualitative level of 10 studies that were nonrandomized two-group studies with evidence level II (100.0%). These results suggest that the evidence level of the studies was high. We analyzed 10 studies and identified 12 motor tasks and 19 cognitive tasks. Walking was the most commonly used evaluation motor task and counting backward by ones and naming animals were the most commonly used evaluation cognitive tasks. Moreover, the velocity speed was the most used result analysis method. The results indicate that there were significant differences in dual-task performance between patients with normal and mild cognitive impairment. Conclusions: The results of this study can be used as a basis for the selection of dual-task evaluation items and methods of analyzing the results for screening mild cognitive impairment. Furthermore, they are expected to be used for research on the development of dual-task evaluation tools. It is necessary to compare and analyze the usage trends of dual-task evaluation by cultural differences in future studies.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0