메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
홍고르출 (충북대학교) 김미혜 (충북대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제11권 제12호
발행연도
2020.1
수록면
23 - 30 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는, 천연가스(NG) 데이터와 가스 관련 환경 요소 간의 관계를 기계학습 알고리즘을 사용하여 가스 누출 데이터를 직접 측정하지 않고 가스 누출 위험 수준을 예측하였다. 이번 연구는 서버가 제공하는 오픈 데이터인 IoT 기반 원격 제어 피카로(Picarro) 가스 센서 사양을 기반으로 사용했다. 천연 가스는 공기 중으로 누출이 되며, 대기 오염, 환경, 그리고 건강에 큰 문제가 된다. 본 연구에서 제안하는 방법은 천연 가스의 누출 위험 예측을 위한 랜덤 포레스트(Random Forest) 분류 기반 다변량 특이치 제거 방법이다. 비지도 k-평균 클러스터링 후에 실험 데이터 집합은 불균형 데이터이다. 따라서 우리는 제안된 모델이 중간과 높은 위험 수준을 가장 잘 예측할 수 있다는 점에 초점을 맞춘다. 이 경우 각 분류 모델에 대한 수신자 조작 특성(ROC) 곡선, 정확도, 평균 표준 오차(MSE)를 비교했다. 실험 결과로 정확도, 수신자 조작 특성의 곡선 아래 영역(AUC, Area Under the ROC Curve), MSE가 각각 MOL_RF의 경우 99.71%, 99.57%, 및 0.0016의 결과 값을 얻었다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0