메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이훈민 (전남대학교) 정선일 (전남대학교) 김영철 (전남대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제9권 제4호
발행연도
2020.1
수록면
102 - 108 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 사람의 손동작에 의해 모바일장치상의 전기장센서를 통해 감지되는 동작신호의 실시간 검출 및 프레임 추출 알고리즘을 제안한다. 동작인식에 사용되는 전기장센서는 주변 환경 및 시점에 따라 랜덤잡음 및 센서 표면의 초기 대전상태의 가변적인 특성으로 인해 안정적으로 동작신호를 검출하는데 어려움이 있다. 본 논문에서는 이와 같은 환경에서도 안정적이고 강건하게 동작신호를 감지하여 검출할 수 있는 동적문턱치 방법(dynamic thresholding method)을 제안한다. 동작발생감지여부는 10Hz low-pass 필터와 MA(Motion Average) 필터를 통한 입력신호가 특정 문턱 전압값을 넘을 경우 감지되는데 감지시점 센서상의 정전하상태가 가변적이므로 주기적으로 offset 값을 계산하여 새로운 문턱치를 동적으로 적용하는 방법이다. 이러한 방법으로 동작신호 감지율을 98% 이상으로 향상 시킬 수 있었다. 또한 일단 동작이 감지되면 정문턱치(positive thresold)와 부문턱치(negative threshold)의 통과시점, 횟수와 평균 동작주기를 고려한 동작신호프레임 알고리즘을 제안하였으며 이의 프레임추출 성공률도 98% 이상의 성능을 보였다. 본 논문에서 제안한 알고리즘으로 추출된 동작신호는 이후 신호정규화를 거쳐 LSTN 심층신경망 인식부를 거쳐 높은 손동작 인식률을 보임으로서 제안된 알고리즘의 우수함을 입증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0