메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이한솔 (한림대학교대학원 언어병리학과) 조은별 (성균관대학교의과대학 삼성서울병원 신경과학교실) Duk L. Na (Department of Neurology Samsung Medical Center) 윤지혜 (한림대학교 자연과학대학 언어청각학부)
저널정보
한국청각언어재활학회 Audiology and Speech Research Audiology and Speech Research 제17권 제1호
발행연도
2021.1
수록면
91 - 102 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Writing deficits are one of the major indicators of cognitive decline. The purpose of this study was to investigate the word-writing performance according to the degree of cognitive decline. Methods: Eighty-seven participants [30 patients with subjective memory complaint (SMC), 30 patients with amnestic mild cognitive impairment (aMCI), and 27 patients with Alzheimer’s disease (AD)] performed tasks involving writing regular words, irregular (phoneme-grapheme non correspondent) words, and nonwords. Data were collected using a tablet personal computer and digital pen and were analyzed according to four categories: the number of the correct response, error types, graphemic writing time, and pause time. Results: There was no difference between the SMC group and the aMCI group regardless of the writing task types, whereas the AD group scored significantly lower compared with the aMCI group in the irregular word-writing task. Additionally, all three groups showed poor performance in the order of regular words, nonwords, and irregular words. The most frequent error types in all three groups were substitution, elision, and addition. There was no difference in the graphemic writing time and pause time. Conclusion: Our findings show that declined cognitive function may affect the lexical route during writing. This study is meaningful because it is the first attempt to investigate the word-writing performance according to the degree of the neuropathological deficits.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0