메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이재은 (부경대학교) 김영봉 (부경대학교) 김종남 (부경대학교)
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제22권 제2호
발행연도
2021.1
수록면
71 - 78 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
영상의 군집 속에서 특정 영상을 분류하기 위해서는 주로 목표 영상과 배경의 명암 차이를 구하는데 만약 특정 영상의 윤곽선이 흐리고 선명도가 낮다면 이를 분류하기가 쉽지 않다. 하지만 이러한 영상을 분류하기 위한 연구들이 많지 않으며, 지금까지 발표된 방법들을 적용하더라도 제대로 구분하지 못한다는 어려움이 있다. 본 논문에서는 각 3차원 필름 영상들의 히스토그램을 구한 후, 히스토그램의 최고 빈도를 기준으로 특정 빈도에서의 폭을 구하여 윤곽선이 흐린 불량패턴의 영상을 분류하는 방법을 제안한다. 실험을 통하여 정품 패턴과 불량 패턴 영상의 히스토그램 분포의 차이가 뚜렷하다는 것을 확인할 수 있었으며, 이러한 히스토그램의 특성을 반영한 제안 알고리즘을 통하여 모든 영상들을 정확하게 분류할 수 있다는 것을 보였다. 제안한 알고리즘의 성능을 평가하기 위하여 이진화, 히스토그램, 가장자리 검출을 이용한 각각의 유사도 검정들과 퓨샷 러닝의 분석 결과를 비교분석 하였으며, 실험을 통하여 제안한 알고리즘은 앞선 네 가지 방법들보다 복잡한 계산 없이 높은 성능을 낼 수 있다는 것을 검증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0