메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yeonsu Oh (Kangwon National University) Sang-Joon Lee (Kangwon National University) Ho-Seong Cho (Jeonbuk National University) Dongseob Tark (Jeonbuk National University)
저널정보
한국동물위생학회(구 한국가축위생학회) 한국가축위생학회지 한국가축위생학회지 제43권 제4호
발행연도
2020.1
수록면
237 - 244 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Porcine transmissible gastroenteritis (TGE) has been a significant cause of economic losses in pig farming industry since 1950s. Although transmissible gastroenteritis virus (TGEV) has declined in recent years, it should not be excluded because of its characteristics; the frequency of gene mutation, the mortality in piglets, and the possibility for sudden incidence. Therefore, the herd-level monitoring of the virus is important to prevent further circulation of TGE. The aim of this study is to develop a large-scale sandwich enzyme-linked immunosorbent assay (ELISA) with high specificity to rapidly detect TGEV in feces by using monoclonal antibodies (Mabs). The TGEV specific Mabs were produced in hybridoma cells. Among the Mabs belonged to the IgG class developed by this study, the final selected 8H6, 1B7, 4G3, and 1F8 were identified to have the neutralization ability against TGEV. The sandwich ELISA was established using 8H6 as a reporter antibody and 1B7 and the reported 5C8 as a capture antibody. The developed sandwich ELISA was able to distinguish TGEV from other pathogenic diarrheal agents (porcine rotavirus, porcine reovirus, porcine epidemic diarrhea virus (PEDV), E. coli, and C. perfringens) in tissue culture as well as fecal samples. And the detection rate of TGEV in feces was 80% compared with RT-PCR. The results suggested that the developed sandwich ELISA may be useful in the herd-level monitoring for effective preventive measures due to the early diagnosis of TGEV using a large amount of samples.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0