메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최영현 (한양대학교) 이규혜 (한양대학교)
저널정보
한국의류산업학회 한국의류산업학회지 한국의류산업학회지 제23권 제2호
발행연도
2021.1
수록면
212 - 225 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the recognition of YouTube as an information searching tool, YouTube creators have become sources ofinformation to consumers. This study aims to analyze the consumers’ response of famous fashion YouTubers in Korea,and to identify differences in consumer response based on the gender and generation of YouTubers. During the periodfrom the opening of fashion creators’ YouTube channels, we collected postings on blogs and Internet cafes using textom. As a result of preliminary investigation, six fashion YouTubers were selected. First, all the selected fashion YouTuberswere well recognized by consumers as fashion informants. However, Milanonna has been shown to act as a life advisorand as an informant for luxury brands at the same time. Second, female fashion YouTubers were perceived with themesrelated to daily life, beauty behavior, emotions, and mood rather than fashion itself, whereas, male fashion YouTubersappeared more interested in fashion accessories, especially basic style. Third, the Z-generation fashion YouTuber showedthe most non-fashion keywords, and the Millennials fashion YouTuber showed keywords related to fashion items andproduct purchase properties. However, consumer responses of OPAL fashion YouTubers have emerged with items suchas life experiences, wisdom, and advice. Also, the OPAL fashion YouTuber showed a variety of consumer assessmentsand the YouTuber’s personal background. By analyzing the differences in consumers’ response of fashion YouTubersbased on gender and age in this study, it is possible to establish an appropriate strategy to attract target consumers andfind their appeal points.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0