메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이지은 (서울대학교) Joon Yul Choi (Seoul National University) Dongmyung Shin (Seoul National University) 김응엽 (가천대학교) 오세홍 (한국외국어대학교) 이종호 (서울대학교)
저널정보
대한자기공명의과학회 Investigative Magnetic Resonance Imaging Investigative Magnetic Resonance Imaging 제24권 제4호
발행연도
2020.1
수록면
207 - 213 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To understand the effects of datasets with various parameters on pretrained network performance, the generalization capacity of the artificial neural network for myelin water imaging (ANN-MWI) is explored by testing datasets with various scan protocols (i.e., resolution and refocusing RF pulse shape) and types of disorders (i.e., neuromyelitis optica and edema). Materials and Methods: ANN-MWI was trained to generate a T2 distribution, from which the myelin water fraction value was measured. The training and test datasets were acquired from healthy controls and multiple sclerosis patients using a multiecho gradient and spin-echo sequence with the same scan protocols. To test the generalization capacity of ANN-MWI, datasets with different settings were utilized. The datasets were acquired or generated with different resolutions, refocusing pulse shape, and types of disorders. For all datasets, the evaluation was performed in a white matter mask by calculating the normalized root-mean-squared error (NRMSE) between the results from the conventional method and ANN-MWI. Additionally, for the patient datasets, the NRMSE was calculated in each lesion mask. Results: The results of ANN-MWI showed high reliability in generating myelin water fraction maps from the datasets with different resolutions. However, the increased errors were reported for the datasets with different refocusing pulse shapes and disorder types. Specifically, the region of lesions in edema patients reported high NRMSEs. These increased errors indicate the dependency of ANN-MWI on refocusing pulse flip angles and T2 characteristics. Conclusion: This study proposes information about the generalization accuracy of a trained network when applying deep learning to processing myelin water imaging.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0