메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
백경완 (경상국립대학교) 박정준 (부산대학교) 김정안 (고려대학교)
저널정보
한국운동생리학회 운동과학 운동과학 제30권 제2호
발행연도
2021.1
수록면
131 - 146 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
PURPOSE: Machine learning (ML) refers to newly developed computer algorithms that are improved through iterative experiences. ML applications are expected to assist humans in analyzing large amounts of data. This review has outlined the application of ML in analyzing variable vital data such as walking steps, exercise intensity, heart rate, sleeping hours, sleep quality, resting heart rate, blood pressure, and calorie consumption in a day. Vital data consist of different variables that are closely related to genomic or exercise data. The prediction of healthy traits from a vital dataset has become a necessity in personalized medicine. METHODS: Considerations and repeated tasks in supervised, semi-supervised, and unsupervised ML methods are presented. ML methods such as artificial neural networks, Bayesian networks, support vector machines, and decision trees have been widely used in biomedical studies to develop predictive models. Through vital data, these models can help in effective and accurate decision-making for a healthier life. PURPOSE: Models based on genomic, exercise, and vital datasets provide a healthy lifestyle through regular exercise. We have provided guidelines to help in the selection of these ML methods and their practical application for variable vital data analysis. CONCLUSIONS: Our guidelines could serve as a foundation for implementing both participatory medicine and data-driven exercise science.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0