메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nam Hoang Nguyen (Pukyong National University) Minh Binh Lam (Pukyong National University) 정완영 (부경대학교)
저널정보
한국센서학회 센서학회지 센서학회지 제29권 제5호
발행연도
2020.1
수록면
293 - 302 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery,thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions??room temperature and refrigerator temperature??both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0