메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
심성문 (울산과학기술원) 김우혁 (울산과학기술원) 이재세 (울산과학기술원) 강유진 (울산과학기술원) 임정호 (울산과학기술원) 권춘근 (국립산림과학원) 김성용 (국립산림과학원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제5호
발행연도
2020.1
수록면
1,109 - 1,123 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
국토 대부분이 산림으로 구성되어 있는 대한민국은 매 년 많은 산불이 발생한다. 산불은 토양의 전단강도를 약화시켜 산사태에 취약한 토양층을 만들기도 하고, 수목의 복구가능여부에 따라 다른 계획 설립이 필요하기 때문에 산불피해면적 뿐만 아니라 피해강도에 대한 파악도 중요하다. 위성 원격탐사를 통한 산불피해강도 추정 연구가 많이 수행되어 왔으나, NDVI(Normalized Difference Vegetation Index)와 NBR(Normalized Burn Ratio) 등과 같은 단일 인자의 시계열 변화만을 이용하여 피해강도를 파악하기에는 한계가 있다. 본 연구에서는 Sentinel-1A SAR-C (Synthetic Aperture Radar-C)와 Sentinel-2A MSI(Multi Spectral Instrument)센서의 자료를 이용하여 기계학습방법을 통한 산불 피해강도 탐지 모델들을 제시하였다. 2017년 5월 삼척, 2019년 4월 강릉·동해, 2019년 4월 고성·속초 총 세개의 산불사례를 이용하여 RF(Random forest), LR(Logistic regression), SVM(Support Vector Machine)기계학습 모델을 구축하였다. 연구결과, random forest 모델이 82.3%의 총정확도로 가장 높은 성능을 보여주었다. 모델의 범용성 및 학습자료 민감도 확인을 위해 사례교차검증도 추가 시행하였는데, 그 결과 사례들의 시기적 차이에 의한 식생활력 및 재생도의 차이에 민감도가 높음을 확인하였다. 이는 추후 다양한 시공간적 사례를 추가할 시 개선이 될 것으로 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0