메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정재환 (성균관대학교 건설환경연구소) 조성근 (성균관대학교) 전현호 (성균관대학교) 이슬찬 (성균관대학교(자연과학캠퍼스)) 최민하 (성균관대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제38권 제5호
발행연도
2022.10
수록면
571 - 585 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기후변화로 인한 가뭄, 홍수, 산불, 산사태 등 자연재해의 위협이 증가함에 따라, 합성개구레이더(Synthetic Aperture Radar, SAR)와 같이 고해상도 토양수분 복원에 대한 사회적 수요도 증가하고 있다. 하지만국내 환경은 산림 지형의 비율이 높아, 식생과 지형의 영향을 크게 받는 SAR 자료에서 토양수분을 복원하는데많은 어려움을 겪고 있다. 이에 본 연구에서는 기계학습의 일종인 인공신경망(Artificial Neural Network, ANN)기법을 활용하여, Sentinel-1 SAR 영상의 자립형 활용성을 평가하였다. Sentinel-1에서 얻을 수 있는 이중편파 산란계수는 토양수분 거동과 유의미한 상관성을 가지고 있음을 확인할 수 있었으며, 다른 위성이나 지점에서 관측된 보조자료를 사용하지 않고도 식생의 효과 등을 보정할 수 있는 자립형 활용 가능성도 확인할 수 있었다. 하지만 각 지점별, 지형 그룹별 특성에 의한 차이가 크게 나타났으며, 특히 산지와 평지에서 학습된 모형을 교차적용하였을 때 토양수분을 제대로 모의할 수 없는 현상이 발생하였다. 또한 이러한 문제를 해결하고자 학습 지점의 수를 늘리는 경우에는 토양수분 복원 모형이 평활화되어 상관계수는 증가하였으나, 지점에서의 오차는점점 증가하였다. 따라서 고해상도 SAR 토양수분 자료를 광범위하게 적용하기 위해서는 체계적 연구 수행이선행되어야 하며, 목적에 따른 학습 지점의 선정, 적용 지역의 범위 등을 구체적으로 제한하여 활용한다면 다양한 분야에서 효과적으로 활용할 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0