메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김준우 (서울대학교) 전현균 (서울대학교) 김덕진 (서울대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제5호
발행연도
2020.1
수록면
1,095 - 1,107 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
홍수 발생 시 위성영상을 활용하여 침수된 지역을 추출하는 것은 홍수 발생 기간 내의 위성영상 취득과영상에 나타난 침수구역의 정확한 분류 등에서 많은 어려움이 존재한다. 딥러닝은 전통적인 영상분류기법들에 비해 보다 정확도가 높은 위성영상분류기법으로 주목받고 있지만, 광학영상에 비해 홍수 발생 시 위성영상의 취득이 용이한 SAR 영상의 분류 잠재력은 아직 명확히 규명되지 않았다. 본 연구는 대표적인 의미론적 영상 분할을 위한 딥러닝 모델인 SegNet과 U-Net을 활용하여 동남아시아의 라오스, 태국, 필리핀의 대표적인 홍수 발생지역인 코랏 유역(Khorat basin), 메콩강 유역(Mekong river basin), 카가얀강 유역(Cagayan river basin)에대해 Sentinel-1 A/B 위성영상으로부터 침수지역 추출을 실시하였다. 분석결과 침수지역 탐지에서 SegNet의 Global Accuracy, Mean IoU, Mean BF Score는 각각 0.9847, 0.6016, 0.6467로 나타났으며, U-Net의Global Accuracy, Mean IoU, Mean BF Score는 각각 0.9937, 0.7022, 0.7125로 나타났다. 국지적 분류결과 확인을 위한 육안검증에서 U-Net이 SegNet에 비해 보다 높은 분류 정확도를 보여주었지만, 모델의 훈련에 필요한 시간은 67분 17초와187분 19초가 각각 소요되어 SegNet이 U-Net에 비해 약 3배 정도 빠른 처리속도를 보여주었다. 본 연구의 결과는 향후 딥러닝 기법을 활용한 SAR 영상기반의 홍수탐지 모델과 실무적으로 활용이 가능한 자동화된 딥러닝기반의 수계탐지 기법의 제시를 위한 중요한 참고자료로 활용될 수 있을 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0