메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최호성 (충북대학교) 서두천 (한국항공우주연구원) 최재완 (충북대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제5호
발행연도
2020.1
수록면
961 - 973 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 CNN (Convolutional Neural Network) 기반의 영상융합 기법을 제안하고자 하였다. 딥러닝 구조의 성능을 향상시키기 위하여, CNN 기법에서 대표적인 합성곱(convolution) 방법으로 알려진 팽창된합성곱(dilated convolution) 모델을 활용하여 모델의 깊이와 복잡성을 증대시키고자 하였다. 팽창된 합성곱을 기반으로 하여 학습과정에서의 효율을 향상시키기 위하여 잔차 네트워크(residual network)도 활용하였다. 또한, 본 연구에서는 모델학습을 위하여 전통적인 L1 노름(norm) 기반의 손실함수와 함께, 공간 상관도를 활용하였다. 본 연구에서는 전정색 영상만을 이용하거나 전정색 영상과 다중분광 영상을 모두 활용하여 구조에 적용한 DRNet을 개발하여 실험을 수행하였다. KOMPSAT-3A를 활용한 전정색 영상과 다중분광 영상을 이용한DRNet은 융합영상의 분광특성에 과적합되는 결과를 나타냈으며, 전정색 영상만을 이용한 DRNet이 기존 기법들과 비교하여 융합영상의 공간적 특성을 효과적으로 반영함을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0