메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
빈삼 (전북대학교) 염혜정 (전북대학교)
저널정보
한국패션비즈니스학회 패션 비즈니스 패션 비즈니스 제25권 제3호
발행연도
2021.1
수록면
1 - 16 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In December 2019, when the novel coronavirus (nCoV) was identified in Wuhan, Hubei, China, the number of people belonging to post-90s generation among about 42,000 medical staffs personnel supporting Hubei was 12,000 or more, accounting for about 33.3% of the total number of personnel. The term “post-90s generation” generally indicates young people born from 1990 to 1999. The study scope is the 1990-2020 period between the birth of post-90s generation and present. Literature and empirical studies are performed. Generational characteristics and fashion trends shown only by post-90s generation through precedent studies and reports are as follows: First, generational characteristics of post-90s generation can be categorized into the following three characteristics: “sang wenhua”, “collective loneliness”, and “diversified identity”. Second, fashion trends of the post-90s generation can be categorized into the following three characteristics: “new Chinese style fashion”, “masstige fashion”, and “de-labeling fashion”. The above results show that the post-90s generation uses “culture” and “me” as keywords. Further, the above trend is consequently divided into the following two characteristics: “diversification” and “individualization”. This is because the post-90s generation is directly affected by the reform and opening and the 9-year compulsory education policy of China compared to the previous generations; hence, these people are greatly influenced by Western culture and fashion as well as their own culture and fashion. It refers having a tendency to express one’s individuality with a variety of tastes and styles.

목차

등록된 정보가 없습니다.

참고문헌 (78)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0