메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최모나 (연세대학교) 김미희 (연세대학교 간호대학) 김정아 (한양대학교) 장혜정 (경희대학교)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제26권 제3호
발행연도
2020.1
수록면
229 - 237 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: With growing attention on the healthcare industry as a potential market for big data and artificial intelligence inthe Fourth Industrial Revolution, countries around the world are introducing and developing various policies and projects relatedto health information technology (HIT). To assist prioritizing HIT topics in policy making, this study adopts the Delphitechnique to garner expert opinions from various fields of health informatics. Methods: Data were collected from November2019 to February 2020 using the Delphi technique through two rounds of surveys administered via email. The Delphi panelconsisted of 16 experts with a high level of experience in health informatics. They were from the Health Information PolicyAdvisory Committee of the Ministry of Health and Welfare of Korea, and the board of directors of the Korean Society ofMedical Informatics. The experts were asked to assess the importance, urgency, and difficulty of HIT topics in three domains:technology, application, and infrastructure. Results: Of the 40 topic items, a 100% agreement was reached for the importanceof 6 items, including 2 items in technology, 1 item in application, and 3 items in infrastructure domains. Especially, QuadrantI of a 2×2 matrix showing high importance and high urgency included 7 items in the technology domain, 2 items in the applicationdomain, and 13 items in the infrastructure domain. Conclusions: Most items with high importance and urgency belongedto the infrastructure domain. The findings indicated that fostering an infrastructural environment should be policeswith top priorities of HIT.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0