메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이남연 (한신대학교) 이재형 (한신대학교 IT경영학과 학사과정)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제19권 제3호
발행연도
2021.1
수록면
167 - 176 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 빅데이터 분석 기술이 발전하면서 사회 이슈를 분석하기 위해 그 동안 많은 텍스트 마이닝 기법을 활용한 연구들이 진행되어왔다. 사회이슈를 도출하기 위한 기존의 연구들을 살펴보면 다량의 텍스트 데이터를 뉴스, SNS 등으로부터 수집하여 토픽 모델링, 네트워크 분석 등의 기법을 이용하여 데이터로부터 이슈를 추출하고 분석하는 방식으로 연구들이 이루어져왔다. 사회 이슈는 다양한 사회현상들이 누적되어 나타나는 결과물이다. 하지만 기존 연구들이 가지는 한계점은 사회적으로 나타나는 이슈, 즉 결과에 대한 분석에 초점이 맞춰져 있어 해당 이슈의 발생 원인을 밝히는 것에는 한계를 가진다는 것이다. 사회이슈에 적절하게 대응하기 위해서는 어떠한 사회이슈가 존재하는지를 확인하는 것뿐만 아니라 사회이슈의 발생 원인을 파악하는 것이 필요하다. 이러한 한계점을 극복하기 위해서 본 연구에서는 사회이슈와 관련한 텍스트로부터 사회이슈의 원인이 되는 요인을 도출하는 방법을 국어학의 품사이론을 기반으로 제안하였다. 이를 위해서 2017년 1월부터 2019년 12월까지의 3년 동안의 사회이슈와 관련한 뉴스데이터를 수집하여 수집된 텍스트 내 단어들의 인과관계를 인과문형을 찾아 분석한 후 기존 텍스트마이닝 기법 접목하여 사회이슈의 원인 단어들을 찾는 방법론을 제안하였다.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0