메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박세준 (Konkuk University) 김현진 이두희 (Konkuk University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제11호
발행연도
2021.11
수록면
1,625 - 1,632 (8page)
DOI
10.5370/KIEE.2021.70.11.1625

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we develop three probabilistic electric load forecasting approaches: two parametric approaches and one non-parametric approach. In the parametric approach, we design the probability of load forecasts as the Laplace distribution since the empirical distribution of load forecasts has a shape of Laplace distribution. We also design the probability of load forecasts as the Gaussian distribution, since it has been widely used in other studies. We compare the forecasting accuracy of two distributions. The means of distributions are estimated by using the gradient boosting machine (GBM), and the standard deviations of distributions are estimated by analyzing forecasting errors through the cross validation. In the non-parametric approach, we find the probability of load forecasts by using the quantile regression (QR). Finally, we compare the forecasting accuracy of parametric and non-parametric approaches by measuring the accuracy on the pinball loss function. A parametric approach based on the Laplace distribution and GBM is the most accurate approach.

목차

Abstract
1. 서론
2. 사례조사
3. 확률적 전력수요 예측 알고리즘
4. 해석 결과
5. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-002150208