메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hye-won Jin (Soongsil University) A-Hyeon Lee (Soongsil University) Ye-Jin Chae (Soongsil University) Su-Hyun Park (Soongsil University) Yu-Jin Kang (Soongsil University) Soowon Lee (Soongsil University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제10호(통권 제211호)
발행연도
2021.10
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 대부분의 음성인식 오류 교정에 관한 연구는 영어를 기준으로 연구되어 한국어 음성인식에 대한 연구는 미비한 실정이다. 하지만 영어 음성인식에 비해 한국어 음성인식은 한국어의 언어적인 특성으로 인해 된소리, 연음 등의 발음이 있어, 비교적 많은 오류를 보이므로 한국어 음성인식에 대한 연구가 필요하다. 또한, 기존의 한국어 음성인식 연구는 주로 편집 거리 알고리즘과 음절 복원 규칙을 사용하기 때문에, 된소리와 연음의 오류 유형을 교정하기 어렵다. 본 연구에서는 된소리, 연음 등 발음으로 인한 한국어 음성인식 오류를 교정하기 위하여 LSTM을 기반으로 한 인공 신경망 모델 Sequence-to-Sequence와 Bahdanau Attention을 결합하는 문맥 기반 음성인식 후처리 모델을 제안한다. 실험 결과, 해당 모델을 사용함으로써 음성인식 성능은 된소리의 경우 64%에서 77%, 연음의 경우 74%에서 90%, 평균 69%에서 84%로 인식률이 향상되었다. 이를 바탕으로 음성인식을 기반으로 한 실제 응용프로그램에도 본 연구에서 제안한 모델을 적용할 수 있다고 사료된다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. Context-Sensitive Error Correction Model
IV. Experiment and Evaluation
V. Conclusion
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0