메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sunyoung Park (Sejong University)
저널정보
세종대학교 언어연구소 Journal of Universal Language Journal of Universal Language 제22권 제2호
발행연도
2021.9
수록면
87 - 104 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The current study compares generic representations in different languages including English and Korean. It reviews important universal concepts of genericity denotation in languages and compares how genericity is realized in different languages. By comparing different genericity representations in different languages, the current study predicts possible acquisition difficulties. It also suggests difficulties of acquiring English article systems are also caused by the complex nature of article uses. Particularly, using a large corpus data (ICNALE), the current study reveals how L1 Korean L2 English learners use articles when they denote generic terms in their essays. Ample uses of bare Noun Phrase (NP) forms tentatively suggest that (i) probably uses of ‘articles’ are not necessarily the most efficient way of expressing genericity, and (ii) it can be marked by other grammatical functions, which are more simple and regular. Therefore, the current research argues that NP systems should be simplified and minimally represented in a newly developed language, which by nature will be learners’ extra language. In the current research, generic NPs in Unish language is introduced and it suggests that bare noun forms in Unish can denote genericity in a very regular and economical manner. Therefore, it may be easier for leaners to acquire because the configuration process is minimized in the Unish.

목차

Abstract
1. Introduction
2. Generic References across Languages
3. Corpus Analysis on English Generic NPs
4. Implications for a Newly Constructed Language, Unish
5. Concluding Remarks
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0