메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노정민 (고려사이버대학교) 김용성 (고려사이버대학교)
저널정보
ICT플랫폼학회 JOURNAL OF PLATFORM TECHNOLOGY JOURNAL OF PLATFORM TECHNOLOGY Vol.9 No.3
발행연도
2021.9
수록면
52 - 62 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
제조업 현장에서 제작 공정 수행 전 품질 불량 위험 공정을 예측하여 사전품질관리를 수행하는 것은 매우 중요한 일이다. 하지만 기존 엔지니어의 역량에 의존하는 방법은 그 제작공정의 종류와 수가 다양할수록 인적, 물리적 한계에 부딪힌다. 특히 원자력 주요기기 제작과 같이 제작공정이 매우 광범위한 도메인 영역에서는 그 한계가 더욱 명확하다. 본 논문은 제조업 현장에서 자연어 처리 및 기계학습을 활용하여 품질 불량 위험 공정을 예측하는 방법을 제시하였다. 이를 위해 실제 원자력발전소에 설치되는 주기기를 제작하는 공장에서 6년 동안 수집된 제작 기록의 텍스트 데이터를 활용하였다. 텍스트 데이터의 전처리 단계에서는 도메인 지식이 잘 반영될 수 있도록 단어 사전에 Mapping 하는 방식을 적용하였고, 문장 벡터화 과정에서는 N-gram, TF-IDF, SVD를 결합한 하이브리드 알고리즘을 구성하였다. 다음으로 품질 불량 위험 공정을 분류해내는 실험에서는 k-fold교차 검증을 적용하고 Unigram에서 누적 Trigram까지 여러 케이스로 나누어 데이터셋에 대한 객관성을 확보하였다. 또한, 분류 알고리즘으로 나이브 베이즈(NB)와 서포트 벡터 머신(SVM)을 사용하여 유의미한 결과를 확보하였다. 실험결과 최대 accuracy와 F1-score가 각각 0.7685와 0.8641로서 상당히 유효한 수준으로 나타났다. 또한, 수행해본 적이 없는 새로운 공정을 예측하여 현장 엔지니어들의 투표와의 비교를 통해서 실제 현장에 자연스럽게 적용할 수 있음을 보여주었다.

목차

요약
Abstract
I. 서론
II. 관련 연구
III. 연구 방법
IV. 실험 결과
V. 결론 및 논의
VII. 참고문헌

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0