메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황세웅 (연세대학교 정보대학원) 김종혁 (연세대학교 정보대학원) 황보현우 (연세대학교 정보대학원)
저널정보
한국빅데이터학회 한국빅데이터학회지 한국빅데이터학회지 제3권 제1호
발행연도
2018.1
수록면
95 - 103 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
ICT 기술의 발전에 따라 제조 산업은 공정 상에서 생성되는 제조 데이터를 분석하여 효율을 높이고자 많은 노력을 하고 있다. 본 논문에서는 스마트 공장의 일환으로 의사결정나무 알고리즘(CHAID)을 이용한 데이터 마이닝 기반 제조공정을 제안한다. 약 5개월간 수집된 실제 제조 공정의 432개 센서 데이터를 활용하여 불량률이 낮은 안정적인 공정 기간과 불량률이 높은 불안정한 공정 기간 간에 유의미한 차이를 보이는 변수를 찾아냈다. 선정된 최종 변수가 불량률 개선에 실제로 효과가 있는지를 측정하기 위해 해당 변수의 안정 값 범위를 설정하여 14일 간 공정에서 해당 센서가 안정 값의 범위를 벗어나지 않도록 공정 설정 값을 조절했고, 불량률 개선의 효과를 측정하였다. 이를 통해 제조 산업에서 생성되는 공정 센서 데이터를 활용 및 분석하여 불량률을 개선할 수 있는 실증적인 가이드라인을 제시할 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0