메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손석빈 (서울여자대학교) 조희현 (서울여자대학교) 강희윤 (서울여자대학교) 이병걸 (서울여자대학교) 이윤규 (홍익대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제24권 제9호
발행연도
2021.9
수록면
1,224 - 1,241 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recent development of deep learning techniques for image generation has led to straightforward generation of sophisticated deepfakes. However, as a result, privacy violations through deepfakes has also became increased. To solve this issue, a number of techniques for deepfake detection have been proposed, which are mainly focused on RGB channel-based analysis. Although existing studies have suggested the effectiveness of other color model-based analysis (i.e., Grayscale), their effectiveness has not been quantitatively validated yet. Thus, in this paper, we compare the effectiveness of Grayscale channel-based analysis with RGB channel-based analysis in deepfake detection. Based on the selected CNN-based models and deepfake datasets, we measured the performance of each color model-based analysis in terms of accuracy and time. The evaluation results confirmed that Grayscale channel-based analysis performs better than RGB-channel analysis in several cases.

목차

ABSTRACT
1. 서론
2. 배경 연구
3. 제안한 방법
4. 실험 결과 및 분석
5. 결론
REFERENCE

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0