메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jun-Gyu Park (Chosun University) Beom Lee (Chungbuk National University) Ui-Jung Lee (Chungbuk National University) Hang-Bae Jun (Chungbuk National University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제27권 제4호
발행연도
2022.8
수록면
11 - 20 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The microbial communities and operational performances of a conventional anaerobic digester (AD) and an AD combined with microbial electrolysis cells (ADMEC) were investigated. Primary sludge and waste-activated sludge were used as substrates, and next-generation sequencing (NGS) techniques were used to analyze the microbial characteristics. The results show that ADMEC can achieve a faster stabilization rate, higher organic decomposition, and methane production performance than AD. After both the ADMEC and AD reached a steady state, microbial results revealed that Methanobacterium beijingense and Methanosaeta concilii were the dominant methane-generating archaeal species in AD. In ADMEC, the relative abundance of methylotrophic methanogens (Thermoplasmata class), which has higher methane productivity than other methanogens, is significantly improved. For bacterial communities, an improved relative abundance of the Cloacamonas phylum, which is involved in amino acid fermentation, and in the Erysipelotrichi class, which grows well in environments with high organic concentrations, was observed in ADMEC. In summary, ADMEC is more efficient than AD because organic degradation and methanol production accelerated by bioelectrochemical reactions occur in ADMEC, leading to a favorable environment for the growth of methylotrophic methanogens in bulk solution.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0