메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이희제 (한양대학교) 윤준영 (한양대학교) 박종일 (한양대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2021 하계학술대회
발행연도
2021.6
수록면
85 - 88 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
포인트 클라우드 콘텐츠는 실제 환경 및 물체를 3 차원 위치정보를 갖는 점들과 그에 대응하는 색상 등을 획득하여 기록한 실감 콘텐츠이다. 위치와 색상 정보로만 이뤄진 3 차원 점으로 이뤄진 포인트 클라우드 콘텐츠는 확대하여 렌더링 할 경우 점과 점 사이의 간격이 벌어지면서 발생하는 구멍에 의해 콘텐츠 품질이 저하될 수 있다. 이러한 문제를 해결하기 위해 본 논문에서는 포인트 클라우드 확대 시 점들 간 간격이 벌어져 생기는 구멍에 대해 깊이정보를 활용한 역변환 기반 보간 방법을 통해 포인트 클라우드 콘텐츠 품질을 개선하는 방법을 제안한다. 벌어진 간격들 사이에서 빈 공간을 찾을 때 그 사이로 뒷면의 점들이 그려지게 되어 보간 방법을 적용하는데 방해요소로 작용한다. 이를 해결하기 위해 구멍이 발생하지 않은 시점에서 렌더링 된 영상을 사용하여 포인트 클라우드의 뒷면에 해당되는 점들을 제거한다. 다음으로 깊이 맵(depth map)을 추출한 후 추출된 깊이 값을 사용하여 뎁스 에지(depth edge)를 구하고 에지를 사용하여 깊이 불연속 부분에 대해 처리한다. 마지막으로 뎁스 값을 활용하여 이전에 찾은 구멍들의 역변환을 하여 원본의 데이터에서 픽셀을 추출한다. 제안하는 방법으로 콘텐츠를 렌더링 한 결과, 기존의 크기를 늘려 빈 영역을 채우는 방법에 비해 렌더링 품질이 평균 PSNR 측면에서 2.9 dB 향상된 결과를 보였다.

목차

요약
1. 서론
2. 실험 방법
3. 실험 결과 및 평가 방법
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0