메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeun Jeong Min (Ajou University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제27권 제8호
발행연도
2021.8
수록면
502 - 509 (8page)
DOI
10.5302/J.ICROS.2021.21.0045

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This work proposes a scale-invariant instance segmentation method for images acquired from a real-time camera. It is challenging to detect and segment an exact shape by removing background (named as an instance) of a deformable semi-solid object such as food materials. In this work, we consider the segmentation with the cases of various sizes of an object and multiple objects overlapped with each. To do this, we address an augmented dataset generation method, which extends dataset from small number of base objects, a fundamental dataset. Our method is based upon data augmentation, which is well known that it is an effective way to improve the segmentation performance. Our method addresses the generation of dataset with various scales using small number of original dataset. It is relatively simple in method but provides better performance. We also proposed how to choose a target object(food material) with its centroid for grasping. Through diverse experiments using real-time images, we demonstrate that the proposed algorithm segments scale-invariant object masks and is successfully implemented for a robotic hand to grasp a food material. It is also compared with the state-of-the-art segmentation algorithm. As a result, the proposed method shows 74%, 85%, and 78% in accuracy, recall, and precision while the original dataset shows 67%, 79%, and 70%, respectively.

목차

Abstract
I. Introduction
II. Related Work
III. Problem Statement
IV. Dataset Generation Method
V. Food Materials Segmentation
VI. Experimental Results
VII. Conclusion
REFERENCES

참고문헌 (28)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-003-001917503