메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박규리 (서울시립대) 박창이 (서울시립대)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제32권 제4호
발행연도
2021.7
수록면
767 - 780 (14page)
DOI
10.7465/jkdi.2021.32.4.767

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미지 분류는 기계학습에서 가장 활발하게 연구되고 있는 주제 중 하나이다. 이미지 데이터는 일반적으로 2차원 혹은 3차원 행렬 구조를 가지고 있으며, 지지벡터기계 등 전통적인 분류 기법을 적용하기 위해 벡터화를 시행하게 된다. 하지만 벡터화는 이미지 데이터가 제공하는 구조적 정보를 무시할 수 있다. 구조적 정보를 이용하는 합성곱 신경망은 이러한 단점을 보완하기 위해 도입되었으나, 합성곱 신경망을 포함하는 신경망은 일반적으로 많은 데이터를 요구한다. 반면 지지벡터기계는 적은 수의 표본에서도 상대적으로 안정적인 분류 성능을 보일 뿐만 아니라 지지행렬기계 및 커널 지지행렬기계로 확장됨으로써 이미지 데이터의 구조적 정보도 반영할 수 있게 되었다. 본 논문에서는 표본의 개수가 상대적으로 적은 이미지 데이터에 대하여 비선형 분류 방법인 지지벡터기계, 커널 지지행렬기계, 그리고 합성곱 신경망의 예측 성능을 비교하고 선형 분류 방법이지만 이미지 데이터의 구조적 정보를 반영하는 지지행렬기계도 함께 비교한다.

목차

요약
1. 서론
2. 본론
3. 데이터 분석
4. 결론
References
Abstract

참고문헌 (5)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-041-001931265