메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이지인 (중앙대학교) 송정석 (중앙대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제21권 제6호
발행연도
2021.6
수록면
552 - 560 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
새로운 미술품 유통방식의 발달로 미술품의 미적 효용을 넘어 투자재로서 바라보는 시각이 활성화되고 있다. 미술품의 가격은 주식이나 채권 등과 달리 객관적 요소와 주관적 요소들이 모두 반영되어 결정되는 이질적 특성이 있기 때문에 가격 예측에 있어서 그 불확실성이 높다. 본 연구에서는 LSTM(장단기 기억) 순환신경망 딥러닝 모형을 활용하여 낙찰총액 순위 1위부터 10위까지의 한국 작가의 회화 작품을 대상으로 작가의 특성, 작품의 물리적 특성, 판매적 특성 등을 입력으로 하여 경매 낙찰가의 예측을 시도하였다. 연구 결과, 모델에 의한 예측 가격과 실제 낙찰 가격의 차이를 설명하는 RMSE 값이 0.064 수준이었으며 작가별로는 이대원 작가의 예측력이 가장 높았고, 이중섭 작가의 예측력이 가장 낮았다. 투자재로서 미술품 시장이 더욱 활성화되고 경매 낙찰 가격의 예측 수요가 높아지면서 본 연구의 결과가 활용될 수 있을 것이다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 선행연구
Ⅲ. LSTM의 이론적 배경
Ⅳ. 연구 설계
Ⅴ. 실증분석 결과
Ⅵ. 결론 및 시사점
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0