메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이동훈 (Kookmin University) 김남규 (Kookmin University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제6호(통권 제207호)
발행연도
2021.6
수록면
115 - 127 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
방대한 데이터 가운데 사용자가 원하는 정보를 단번에 찾아내는 것은 결코 쉬운 일이 아니다. 이로 인해 사용자의 문서 열람 이력을 바탕으로 사용자 선호를 고려해 문서를 추천하는 다양한 방법들이 제안되었다. 하지만 기존에 활용된 문서 열람 이력 기반 문서 추천 방법론은 문서를 누가 열람했는지의 정보만을 활용할 뿐, 사용자가 해당 문서를 열람하게 된 의도(Intent)를 충분히 활용하지 못했다는 한계를 갖는다. 따라서 본 연구에서는 해당 문서를 누가(Who) 읽었는지의 정보가 아닌 해당 문서를 왜(Why) 읽었는지의 정보를 활용하는 검색 의도 기반 문서 추천 방안을 제시하고자 한다. 제안방법론의 우수성을 확인하기 위해 국내 전자상거래 플랫폼 기업인 ‘C’ 사의 실제 사용자 검색 이력 239,438건을 분석한 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 내용 기반 추천 모델 및 단순 열람 이력 기반 추천 모델에 비해 우수한 성능을 보임을 확인하였다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Related Research
Ⅲ. Proposed Method
Ⅳ. Experiment
Ⅴ. Conclusion
REFERENCES

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0