메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김효석 (안랩) 김용민 (전남대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제31권 제3호
발행연도
2021.6
수록면
401 - 410 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 산업제어시스템은 인터넷에 연결하지 않은 폐쇄적 상태로 운영하는 과거와 달리 원격지에서 데이터를 확인하고 시스템 유지보수를 위해서 개방적 통합적인 스마트한 환경으로 변화하고 있다. 반면에 상호연결성이 증가하는 만큼 산업제어시스템을 대상으로 사이버 공격이 증가함에 따라 산업 공정의 비정상 탐지를 위한 다양한 연구가 진행되고 있다. 산업 공정의 결정적 규칙적인 점을 고려하여 정상데이터만을 학습시킨 탐지 모델의 결과 값과 실제 값을 비교해서 비정상 여부를 판별하는 것이 적절하다고 할 수 있다. 본 논문에서는 HAI 데이터셋 20.07과 21.03을 이용하며, 순환신경망에 게이트 구조가 적용된 GRU 알고리즘으로 서로 다른 타임 스텝을 적용한 모델을 결합하여 앙상블 모델을 생성한다. 그리고 다양한 성능평가 분석을 통해 단일 모델과 앙상블 순환신경망 모델의 탐지 성능을 비교하였으며 제안하는 모델이 산업제어시스템에서 비정상 탐지하는데 더욱 적합한 것으로 확인하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 앙상블 순환신경망을 이용한 비정상 탐지
IV. 실험 및 분석
V. 결론 및 향후 연구
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001861087