메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민성 (숭실대학교) 이민호 (숭실대학교) 이완곤 (숭실대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.6
발행연도
2021.6
수록면
649 - 656 (8page)
DOI
10.5626/JOK.2021.48.6.649

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지식 그래프는 개체들 사이의 관계로 구성된 네트워크를 뜻한다. 이러한 지식 그래프에서 특정 개체들에 대한 관계가 누락되거나 잘못된 관계 연결과 같은 문제로 불완전한 지식 그래프의 문제점이 존재한다. 불완전한 지식 그래프의 문제를 해결하기 위한 많은 연구는 자연어 임베딩 기반으로 인공 신경망을 이용한 학습 방법들을 제안했다. 이러한 방법들로 다양한 지식 그래프 완성 시스템들이 연구되고 있는데 본 논문에서는 특정 질의와 지식 그래프를 활용해 누락된 지식을 추론하는 시스템을 제안하였다. 먼저 의문형의 Query로부터 topic을 자동으로 추출하여 해당 topic 임베딩을 지식 그래프 임베딩 모듈로부터 얻는다. 그 다음 Query 임베딩과 지식 그래프 임베딩을 활용하여 지식 그래프로부터의 topic과 질의문 사이의 관계를 학습하여 새로운 트리플을 추론한다. 이와 같은 방식을 통해 누락된 지식들을 추론하고 좋은 성능을 위해 특정 질의와 관련된 지식 그래프의 술어부 임베딩을 같이 활용하였고 기존 방법보다 더 좋은 성능을 보임을 증명하기 위해 MetaQA 데이터셋을 사용하여 실험을 진행하였다. 지식 그래프는 영화를 도메인으로 갖는 지식 그래프를 사용하였다. 실험 결과로 지식 그래프 전체와 누락된 지식 그래프를 가정하여 트리플들을 임의로 50% 누락시킨 지식 그래프에서 실험하여 기존 방법보다 더 좋은 성능을 얻었다.

목차

요약
Abstract
1. 서론
2. 배경 지식 및 관련 연구
3. 연구 내용
4. 실험
5. 결론 및 향후 연구
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0