메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승훈 (고려대학교) 박현진 (고려대학교) 김현우 (고려대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.2
발행연도
2021.2
수록면
217 - 225 (9page)
DOI
10.5626/JOK.2021.48.2.217

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
합성곱 기반인 합성곱 인공 신경망(CNNs)은 이미지 분류, 이미지 생성, 시계열 분석 등에 다양하게 쓰이고 있다. 하지만 일반적인 유클리디안 공간과는 달리 그래프와 같은 비유클리디안 공간에서는 합성곱을 바로 적용할 수 없다. 이를 극복하기 위해 다양한 기법으로 합성곱을 그래프 상으로 확장하였으며, 다양한 그래프 인공 신경망(GNNs)이 제안되어 왔다. 하지만 기존의 그래프 인공 신경망 연구는 간선의 타입이 하나인 동종 그래프 분석에 국한되어 있는데 반해, 현실의 데이터는 간선의 타입이 많은 이종그래프 데이터인 경우가 많기 때문에 이를 기존의 그래프 인공 신경망으로 해결하려 하면 큰 왜곡이 생기게 된다. 본 연구는 계층적 구조를 가진 이종 그래프 데이터를 효과적으로 다루기 위하여 그래프 변형 네트워크(GTNs) 모델과 쌍곡 그래프 합성곱 네트워크(HGCNs) 모델을 통합하여 새로운 모델인 쌍곡 그래프 변형 네트워크(HGTNs)를 제안한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 쌍곡 그래프 변형 네트워크(Hyperbolic Graph Transformer Networks; HGTNs)
4. 실험 및 결과
5. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-569-001489698