메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeokjin Park (Chung-Ang University) Heonu Kim (Chung-Ang University) Seokmok Park (Chung-Ang University) Joonki Paik (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.8 No.2
발행연도
2021.5
수록면
15 - 18 (4page)
DOI
10.15323/techart.2021.5.8.2.15

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a method of matting the background of photos, excluding human objects, using an improved BASNet featuring the convolutional block attention module (CBAM). Image matting is widely used in media art as a way to change background images to different settings, except for the desired objects. We added CBAM to BASNet to increase performance by maintaining its speed through end-to-end training. The proposed artwork consists of three steps. First, the improved BASNet is used to detect the area in the image and calculate the saliency and foreground maps. Second, the saliency map is resized through interpolation, and zero-padding is applied to match the size with the background image. Finally, the saturation calculation of the desired background and saliency map is performed, the saliency area is changed to black using thresholding, and the image and foreground map are saturated again. As a result, we can improve BASNet through our proposed method to better mat the background. The method presented can convey this richer visual beauty by providing a visual illusion through image matting without the use of a chroma key.

목차

Abstract
1. Introduction
2. Related work
3. Process
3. Experimental results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-688-001727780