메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tanvir Alam Shifat (Kumoh National Institute of Technology) Jang Wook Hur (Kumoh National Institute of Technology)
저널정보
한국통신학회 한국통신학회 학술대회논문집 2021년도 한국통신학회 동계종합학술발표회 논문집
발행연도
2021.2
수록면
591 - 594 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Current signature analysis is a proven method to diagnose motor-related faults at the incipient stage as well as to model a prognostics framework. Due to three-phase operational complexity, selecting a suitable phase current is a challenging task. Working with all three phases will increase computational expense and decision making will become time-consuming. Therefore, a method is required that guarantees accurate condition monitoring in a shorter period is necessary. In this paper, we present an improved fault diagnosis and prognostics framework of electric motors using a single-phase normalized modal current computation that preserves the characteristics of all three-phases. The normalized modal current ensures the presence of three-phase currents as it is calculated using a linear phase relationship and normalized current amplitudes. The effectiveness of this method is verified using a brushless DC (BLDC) motor at different health states. Using the modal current analysis, anomalies were detected through the third harmonic analysis in different health states of the motor. Also, for future predictions, a support vector machine (SVM) classifier is trained and validated for the features computed from the motor current.

목차

Abstract
I. INTRODUCTION
II. PROPOSED METHOD
III. OVERVIEW OF RELATED THEORIES
IV. TEST BENCH AND DATA DESCRIPTION
V. RESULT ANALYSIS AND DISCUSSION
VI. CONCLUSION AND FUTURE WORKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0