메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jesline Joy (Luleå University of Technology) Michel J. Cervantes (Luleå University of Technology) Mehrdad Raisee (University of Tehran)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.14 No.1
발행연도
2021.3
수록면
95 - 108 (14page)
DOI
10.5293/IJFMS.2021.14.1.095

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the present study, a reduced model of the Francis-99 model turbine was investigated numerically at part load operating condition. The reduced model consists of a standalone draft tube domain of the Francis-99 model turbine. Numerical studies performed in the past on nearly complete hydro-turbine models (inclusive of the spiral casing, distributor domains, runner, and draft tube) reportedly consist of a large number of computational grids. This may increase the computational costs and data storage required to perform numerical analysis, which could be a setback for future research on new design concepts and optimization study of the draft tube domain. The reduced model was developed by mapping the phase averaged axial, radial, and tangential velocity profiles from the runner exit to the inlet of the standalone draft tube domain. Additionally, turbulent kinetic energy (k) and turbulent eddy dissipation (ε) variables were also considered for better flow prediction inside the draft tube domain. Two methods for mapping inlet boundary conditions were considered in the present study. In the first method, the entire planar profile of the runner-draft tube interface was considered. In the second method, the variables along a radial profile at the runner exit were considered with an axis-symmetric flow assumption over the entire draft tube inlet plane. The numerical results obtained from the Francis-99 reduced model turbine were validated against the numerical model of the NVKS Francis-99 model turbine (with available structured mesh) that was also analysed using the passage flow numerical technique and available experimental results. The results were found to be in reasonable agreement, with each other. The present study could be useful for the future mitigation study of rotating vortex rope by modifying the draft tube domain.

목차

Abstract
1. Introduction
2. Numerical modelling
3. Results and Discussion
4. Conclusion
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-554-001653520