메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김송희 (동국대학교) 김선혜 (동국대학교) 윤병운 (동국대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제22권 제3호
발행연도
2021.3
수록면
20 - 29 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
4차산업혁명 시대에는 대량의 데이터를 학습하여 예측과 분류의 정확성을 향상시킬 수 있는 인공지능의 활용이 핵심적이다. 그러나, 기존 이상탐지를 위한 방법은 제한된 데이터를 다루는 전통적인 통계 방법에 의존하고 있어, 정확한 이상탐지가 어렵다. 그러므로, 본 연구는 인공지능 기반 이상탐지 방법을 제시하여 예측 정확도를 높이고, 새로운 데이터 패턴을 정의하는 것을 목적으로 한다. 특히, 자동차의 경우 공회전 기간의 센서 데이터가 이상 탐지에 활용될 수 있다는 관점에서 데이터를 수집하고 분석하였다. 이를 위해, 예측 모델에 입력되는 데이터의 적정 시간 길이를 결정하고, 공회전 기간 데이터와 전체 운행 데이터의 분석 결과를 비교하며, 다양한 센서 데이터 조합에 의한 최적 예측 방법을 도출하였다. 또한, 인공지능 방법으로 선택된 CNN의 예측 정확성을 검증하기 위해 LSTM 결과와 비교하였다. 분석 결과, 공회전 데이터를 이용하고, 공회전 기간보다 1.5배 많은 기간의 데이터를 이용하며 LSTM보다는 CNN을 활용하는 것이 더 좋은 예측결과를 보였다.

목차

요약
Abstract
1. 서론
2. 배경이론
3. 연구 프레임워크
4. 분석 결과
5. 결과 해석 및 시사점
6. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0