메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이강호 (경희대학교) 배성호 (경희대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 추계학술대회
발행연도
2020.11
수록면
136 - 139 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 최근 대두되고 있는 심층신경망 압축 연구에서 가중치 공유와 관련하여 심층신경망 모델 압축방법 Inter-Layer Kernel Prediction을 제안한다. 제안 방법은 영상 압축에서 사용되는 프레임 간 prediction 방법을 응용한 컨볼루션 신경망 가중치 공유 및 모델 압축 방법이다. 본 논문은 레이어 간 유사한 kernel들이 존재한다는 것을 발견하고 이를 기반으로 Inter-Layer Kernel Prediction을 사용하여 기존 모델 가중치를 보다 더 적은 비트로 표현하여 저장하는 방법을 제안한다. 제안 방법은 CIFAR10/100으로 학습된 ResNet에서 약 4.1 배의 압축률을 달성했으며 CIFAR10으로 학습된 ResNet110에서는 오히려 기존 Baseline 모델에 비해 0.04%의 성능 향상을 기록했다.

목차

요약
1. 서론1
2. 관련 연구
3. 제안 방법
4. 실험 결과
5. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001482982