메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박운성 (한국과학기술원) 김문철 (한국과학기술원)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2018 하계학술대회
발행연도
2018.6
수록면
272 - 275 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기존 신경망 기반의 이미지 압축에 많이 사용되었던 신경망인 ResNet 을 대신하여 더 적은 개수의 파라미터를 사용하여 좋은 성능을 낼 수 있는 신경망 구조인 DenseNet 을 이미지 압축에 사용한다. 이미지 압축을 위해 사용되는 신경망 구조는 일반적으로 오토 인코더 구조인데, 병목 층에서 정보 손실이 상당히 많이 발생한다. 따라서 이미지 압축에서 신경망 내에서의 정보 전달은 상당히 중요하다. 기존의 논문에서는 이를 위해 이전의 정보를 그대로 뒤로 전달해주는 구조인 ResNet 을 사용하여 깊은 층에 대해서도 수렴이 잘 되는 결과를 보여주었다. 그러나 많은 수의 파라미터를 사용하는 단점을 해결하기 위해 본 논문에서는 DenseNet 을 이미지 압축에 사용하였고, 병목 층에서의 정보 손실로 인해 이미지의 고주파수 성분이 사라지는 현상을 해결하기 위해 원래 이미지와 JPEG2000 으로 압축한 이미지와의 차이를 추가 입력으로 넣어주어서 주관적인 화질을 개선하였다.

목차

요약
1. 서론
2. 본론
3. 실험결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0