메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
강원준 (서울대학교) 조남익 (서울대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 추계학술대회
발행연도
2020.11
수록면
68 - 71 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝을 이용한 인체 자세 추정(human pose estimation) 연구가 활발히 진행되고 있다. 그 중 구조가 간단하면서도 성능이 강력하여 널리 사용되고 있는 딥러닝 네트워크 모델은 이미지 분류(image classification)에 사용되는 백본 네트워크(backbone network)와 디컨볼루션 출력망(deconvolution head network)을 이어 붙인 구조를 갖는다. 기존의 디컨볼루션 출력망은 디컨볼루션 층을 쌓아 낮은 해상도의 특징맵을 모두 높은 해상도로 변환한 후 최종 인체 자세 추정을 하는데 이는 다양한 해상도에서 얻어낸 특징들을 골고루 활용하기 힘들다는 단점이 있다. 따라서 본 논문에서는 매 디컨볼루션 층 이후에 인체 자세 추정을 하여 다양한 해상도에서 연산을 하고 이를 종합하여 최종 인체 자세 추정을 하는 방법을 제안한다. 실험 결과 Res50 과 기존의 디컨볼루션 출력망의 경우 0.717 AP 를 얻었는데 Res101 과 기존의 디컨볼루션 출력망을 사용한 결과 50% 이상의 파라미터 수 증가와 함께 0.727 AP, 즉 0.010AP 의 성능 향상이 이루어졌다. 이에 반해 Res50 에 다중 해상도 디컨볼루션 출력망을 사용한 결과 약 1%의 파라미터 수 증가 만으로 0.720 AP, 즉 0.003 AP 의 성능 향상이 이루어졌다. 이를 통해 디컨볼루션 출력망 구조를 개선하면 매우 적은 파라미터 수 증가 만으로도 인체 자세 추정의 성능을 효과적으로 향상시킬 수 있음을 확인하였다.

목차

요약
1. 서론
2. 다중 해상도 디컨볼루션 출력망
3. 실험 방법
4. 실험 결과
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001482795