메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김현승 (한양대학교) 김민수 (한양대학교) 최정욱 (한양대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2020년도 대한전자공학회 추계학술대회 논문집
발행연도
2020.11
수록면
601 - 604 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep Learning Model Quantization is the most effective technique to make a model much lighter and cost efficient in terms of computation.
Above many quantization algorithms, PROFIT[1] is a specialized algorithm for sub 4-bit mobile network quantization. But this method has sudden accuracy degradation in 2-bit width precision.
In this paper, we propose a better training method to deal with this problem in 2-bit weight quantization. We adopt AIWQ, a metric for the activation’s instability induced by weight quantization [1] and make threshold value with this metric. Using threshold value, we stop training some quantized layers which have high sensitivity to weight quantization and fine-tune the rest of the quantized layers with different learning rate and scheduler. With this advanced training method, we improved 2-bit weight quantization accuracy of light deep learning models including EfficientNetB0 and MobilenetV2.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0