메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Al-Bloushi Mohammed (SABIC, Corporate T&I) Saththasivam Jayaprakash (Qatar Environment and Energy Research Institute) Jeong Sanghyun (King Abdullah University of Science and Technology (KAUST)) Al-Refaie Abdullah (SABIC, Corporate T&I) Raju S. Arun Kumar (SABIC, Corporate T&I) Kim Choon NG (King Abdullah University of Science and Technology (KAUST)) Amy L. Gary (King Abdullah University of Science and Technology (KAUST)) Leiknes TorOve (King Abdullah University of Science and Technology (KAUST))
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제26권 제6호
발행연도
2021.12
수록면
29 - 36 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consumption and lower heat exchange resulting in reduced efficiency of the cooling tower (CT). Seawater CTs are prone to bio-fouled due to the presences of organic and inorganic compounds which act as nourishment for various microorganisms like (algae, fungi, and bacteria) for their growth under certain environmental conditions. The most commonly being used method to control the biofouling in CT is by addition of biocides such as chlorination. In this study, diatom and green algae were added to the CT basin and its viability was monitored in the recirculating cooling seawater loop as well as in the CT basin. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide (Chlorine dioxide) and ozone, were tested by continuous addition in pilot-scale seawater CTs and it was operated continuously for 60 d. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by Chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (50)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-539-001423116