메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeonchae Yoo (Rural Development Administration) Jongguk Lim (Rural Development Administration) Giyoung Kim (Rural Development Administration) Moon Sung Kim (Beltsville Agricultural Research Center) Jungsook Kang (Rural Development Administration) Youngwook Seo (Rural Development Administration) Ah-yeong Lee (Rural Development Administration) Byoung-Kwan Cho (Chungnam National University) Soon-Jung Hong (Korea National College of Agriculture and Fisheries) Changyeun Mo (Kangwon National University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.47 No.4
발행연도
2020.12
수록면
753 - 767 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The commercial value of strawberries is affected by various factors such as their shape, size and color. Among them, size determined by weight is one of the main factors determining the quality grade of strawberries. In this study, image technology was developed to predict the weight of strawberries using the shape characteristics of strawberry cultivars. For realtime weight measurements of strawberries in transport, an image measurement system was developed for weight prediction with a charge coupled device (CCD) color camera and a conveyor belt. A strawberry weight prediction algorithm was developed for three cultivars, Maehyang, Sulhyang, and Ssanta, using the number of pixels in the pulp portion that measured the strawberry weight. The discrimination accuracy (R2) of the weight prediction models of the Maeyang, Sulhyang and Santa cultivars was 0.9531, 0.951 and 0.9432, respectively. The discriminative accuracy (R2) and measurement error (RMSE) of the integrated weight prediction model of the three cultivars were 0.958 and 1.454 g, respectively. These results show that the 2D imaging technology considering the shape characteristics of strawberries has the potential to predict the weight of strawberries.

목차

Abstract
Introduction
Materials and Methods
Results and discussions
Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-520-001435659