메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최정희 (한국기술교육대학교) 안채헌 (한국기술교육대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.38 No.1
발행연도
2021.1
수록면
11 - 17 (7page)
DOI
10.7736/JKSPE.020.073

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In an environment where ultra-high-precision equipment is used, vibration inevitably occurs due to various factors. These vibrations generate fatal effects, such as defect generation and reduced production yield, on ultra-high-precision production equipment. Among the multiple methods for solving vibration problems, a Tuned Mass Damper (TMD) is a useful technique that reduces vibration without changing the existing structure by attaching a passive dynamic system consisting of additional mass, spring, and damper. However, it is difficult to realize fine-tuning of the system parameters for optimal performance because the passive elements have structural limitations. An active TMD, which has a form wherein sensors, actuators, and a control device are added to the passive TMD structure, was introduced. It has higher performance than passive TMD because dynamic characteristics can be induced to stable and highly damped by a well-designed control algorithm realized by software in the control device. In this study, an active TMD was developed utilizing passive TMD with a voice coil actuator and attached to the center of both end fixed beam that assumed a single-degree-of-freedom structure. A dual-loop control algorithm using a non-minimum phase system was designed for a high-damped response while retaining stability. The modal test was performed for experimental evaluation and excellent performance of active TMD was verified.

목차

1. 서론
2. 수동형 동조질량감쇠기의 설계 방법
3. 능동형 동조질량감쇠기의 개발
4. 실험적 성능 평가
5. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0