메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeran Kim (Chung-Ang University) Jae-hyuck Lee (Korea Environment Institute) Hyuksoo Kwon (National Institute of Ecology)
저널정보
한국환경정책학회 환경정책 환경정책 제28권 특별호
발행연도
2020.12
수록면
97 - 116 (20page)
DOI
10.15301/jepa.2020.28.S.97

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Ecosystem service valuations provide imperative data that is valuable for policy makers. However, the valuations are seldom adopted in national policymaking. In order to promote the use of ecosystem service valuations in policy and decision-making, a two-mode network analysis was conducted in order to investigate trends in ecosystem service valuation research in South Korea. According to the results, the “contingent valuation method” and “choice experiment” showed high connectivity with ecosystem type and service and were frequently employed by valuators. In contrast, the “net factor income” and “contingent ranking method” showed low connectivity and low frequency of use. The ecosystem types “forest”, “farmland,” and “coastal systems” showed high connectivity with the valuation methodologies and high frequency of use whereas “grassland” and “urban” showed low connectivity and frequency of use. The ecosystem services “aesthetic value/amenities/inspiration” and “recreation/ecotourism” showed high connectivity with the methodologies and high frequency of use whereas “forest products” and “natural resources” showed low connectivity and frequency of use. This study identified trends in ecosystem service valuation research in South Korea, and these trends can be used to guide the direction of future research and aid in the selection of methodologies according to ecosystem type and services.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Analysis Method
Ⅲ. Analytical Results
Ⅳ. Discussion
Ⅴ. Conclusions
References

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-339-001426111