메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이원석 (계명대학교) 이현상 (경북대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제12호
발행연도
2020.12
수록면
1,595 - 1,603 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
포털 사이트의 인터넷 뉴스 댓글, SNS, 커뮤니티 사이트 등의 온라인상에서 명예 훼손 사건이 최근 점점 증가하고 있다. 온라인상의 차별 및 혐오 표현은 명예 훼손 문제뿐만 아니라 사생활 침해, 인신 공격 등 다양한 형태로 온라인 서비스 이용자들을 위협하고 있다. 지난 몇 년간 산업계와 학계는 이러한 문제를 해결하고자 다양한 방법으로 연구해왔다. 하지만 한국어 대상으로 수행된 딥러닝 기반 혐오 표현 탐지 연구는 아직까지 부족한 상황이다. 본 연구의 목적은 혐오 표현뿐만 아니라 다양한 차별적 표현에 대한 탐지를 위해 데이터셋을 구축하고 이를 분류하기 위한 딥러닝 모델링을 실험하는 것이다. 데이터셋 구축은 10명의 인원이 교차적으로 검토를 하면서 7개 항목에 대한 라벨링 기준을 확립했다. 본 연구는 약 137,111개에 해당하는 한국어 인터넷 뉴스 댓글 데이터셋에 대해 7개의 항목을 각각 이진 분류하고, 이를 딥러닝 기법을 통해 분석한다. 본 연구에서 제안하는 기법은 어텐션 기반 다중 채널 CNN 모델링 기법이다. 실험 결과 7개 항목에 대해 가중 평균 f1 점수를 평가했을 때, 70.32%의 성능을 달성했다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 기법
Ⅳ. 데이터
Ⅴ. 실험
Ⅵ. 결론
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001409221