메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
구종회 (부산대학교) 김미경 (부산대학교) 차의영 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제12호
발행연도
2020.12
수록면
1,574 - 1,580 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 신체 인식 방법은 특수한 기기를 사용하거나 이미지로부터 영상처리를 통해 검출하는 방법들이 있다. 특수 기기를 사용할 경우 기기를 사용할 수 있는 환경이 제약되고 기기의 비용이 많이 든다는 단점이 있다. 카메라와 영상처리를 사용할 경우 환경의 제약과 비용이 낮아지는 장점이 있지만, 성능이 떨어진다. 이런 단점을 해결하기 위해 카메라와 합성 곱 심층 신경망을 사용한 신체 인식 방법들이 연구되었다. 합성 곱 심층 신경망의 성능을 올리기 위해 다양한 기법들이 제안되었다. 본 논문에서는 합성 곱 심층 신경망의 성능을 올리기 위한 기법 중 스킵 연결을 다양한 형태로 사용하여 스킵 연결이 손 검출 망에 끼치는 영향을 실험하였다. 실험을 통해 기본 스킵 연결 이외 추가적인 스킵 연결의 존재가 성능에 나은 영향을 끼치고 하향 스킵 연결만 추가된 망이 가장 나은 성능을 보임을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 손 관절 인식 방법
Ⅳ. 실험
Ⅴ. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001409190