메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이대현 (고려대학교) 문종섭 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제6호
발행연도
2020.12
수록면
1,053 - 1,065 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 하드웨어의 성능과 인공지능 기술이 발달함에 따라 육안으로 구분하기 어려운 정교한 가짜 동영상들이 증가하고 있다. 인공지능을 이용한 얼굴 합성 기술을 딥페이크라고 하며 약간의 프로그래밍 능력과 딥러닝 지식만 있다면 누구든지 딥페이크를 이용하여 정교한 가짜 동영상을 제작할 수 있다. 이에 무분별한 가짜 동영상이 크게 증가하였으며 이는 개인 정보 침해, 가짜 뉴스, 사기 등에 문제로 이어질 수 있다. 따라서 사람의 눈으로도 진위를 가릴 수 없는 가짜 동영상을 탐지할 수 있는 방안이 필요하다. 이에 본 논문에서는 Bidirectional Convolutional LSTM과 어텐션 모듈(Attention module)을 적용한 딥페이크 탐지 모델을 제안한다. 본 논문에서 제안하는 모델은 어텐션 모듈과 신경곱 합성망 모델을 같이 사용되어 각 프레임의 특징을 추출하고 기존의 제안되어왔던 시간의 순방향만을 고려하는 LSTM과 달리 시간의 역방향도 고려하여 학습한다. 어텐션 모듈은 합성곱 신경망 모델과 같이 사용되어 각 프레임의 특징 추출에 이용한다. 실험을 통해 본 논문에서 제안하는 모델은 93.5%의 정확도를 갖고 기존 연구의 결과보다 AUC가 최대 50% 가량 높음을 보였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 방법
IV. 실험 결과
V. 결론
References

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001438617