메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종복 (농촌진흥청) 장동화 (농촌진흥청) 양가영 (농촌진흥청) 권경석 (농촌진흥청) 김중곤 (농촌진흥청) 이준환 (전북대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제12호
발행연도
2020.12
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
반려견을 키우는 가구 수가 급격하게 증가함에 따라 유기, 유실견도 많이 증가하고 있다. 국내에서는 2014년부터 반려동물 등록제를 시행하고 있지만, 안전성과 실효성 문제로 등록률이 높지 않은 실정이다. 이러한 문제를 해결할 방법으로 반려견 생체인식 기술이 주목을 받고 있다. 생체인식률을 높이기 위해서는 최대한 정면에서 같은 형태로 생체정보 이미지를 수집해야 한다. 하지만 반려견은 사람과 달리 비협조적이기 때문에 생체정보 이미지 수집이 어렵다. 본 논문에서는 반려견 생체인식에 적합한 생체정보 이미지 수집을 위해 실시간 영상에서 반려견 얼굴 방향이 정면인지를 판별하는 방법을 제안한다. 제안 방법은 딥러닝을 활용하여 반려견 눈과 코를 검출하고, 검출된 눈과 코의 상대적 크기와 위치를 통해 5가지의 얼굴 방향 정보를 추출하여 기계학습 분류기로 정면 여부를 판별한다. 2,000개의 반려견 이미지를 분류하여 학습, 검증 및 테스트에 사용하였다. 눈과 코 검출에는 YOLOv3와 YOLOv4를 사용하였고, 분류기는 MLP(Multi-layer Perceptron), RF(Random Forest), SVM(Support Vector Machine)을 사용하였다. YOLOv4와 RF 분류기를 사용하고 제안하는 5가지 얼굴 방향 정보 모두를 적용하였을 때 얼굴 정면 판별 성능이 95.25%로 가장 좋았으며, 실시간 처리도 가능한 것으로 나타났다.

목차

요약
Abstract
1. 서론
2. 재료 및 방법
3. 실험결과
4. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0