메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mingjiang Shi (Southwest Petroleum University) Mengfei Zhang (Southwest Petroleum University) Li Gu (Southwest Pipeline Company) Zhiqiang Huang (Southwest Petroleum University) Lin Feng (Southwest Petroleum University) Qing Liu (Karamay Jianye Energy)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.25 No.4
발행연도
2020.12
수록면
556 - 566 (11page)
DOI
10.4283/JMAG.2020.25.4.556

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the main transportation mode of oil and gas, oil and gas pipelines play an irreplaceable role in energy transportation. Metal magnetic memory detection technology can detect early stress concentration and invisible damage, and can be detected under the action of the geomagnetic field, without the need to magnetize the pipeline in advance. Since the magnetic memory signal is relatively weak, the actual detected signal will be affected by environmental noise, sensor jitter, and pipeline surface deposits. Therefore, the magnetic memory signal needs to be denoised. In this paper, the translation invariant wavelet denoising method, which is improved based on wavelet threshold denoising method, is used to denoise the collected pipeline magnetic memory signals. The experimental results show that the signal-to-noise ratio (SNR) obtained by this method is 4.97 % higher than the unmodified wavelet threshold denoising, and 3.18 % higher than the SNR obtained by the particle swarm optimization wavelet threshold denoising.

목차

1. Introduction
2. Method principle
3. Signal Denoising Simulation
4. Metal Magnetic Memory Signal Experiment and Denoising
5. Conclusion
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0